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Books:

Antenna theory analysis and design [3" edition-Constantine A. Balanis]
Antenna theory and design[2"d edition- Warren L. Stutzman

Antenna is defined as

A transducer designed to transmit and receive electromagnetic waves, it converts
signals on electric circuits (V&I) to EM waves (E&H) radiate in space and vise versa.

Types of Antennas

A good antenna would radiate almost the power delivered to it from the transmitter in a
desired direction or directions. A receiver antenna does the reciprocal process, and
delivers power received from a desired direction or directions.
Antenna can be categorized by:
1 Narrow band versus broadband
[ Size in comparison to the wavelength (e.g., electrically small antennas)
L Omni-directional versus directional antennas
[ Polarization (linear, circular, or elliptic)
1 Antenna Types by Physical Structure
e Wire antennas
e Aperture antennas
e Microstrip antennas
e Antenna arrays
e Reflector antennas
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FIGURE 2-4 Wireless technologies for commercial communication systems




Wire Antennas

Gain range

25 |
Dipole Circular loop  Rectangular loop Helix

Aperture Antennas

Horn antennas are very
popular at UHF (300 MHz-
3GHz)frequencies.

Horn antennas often have :
Directional radiation

pattern (1.5 degree HPBW).
* antenna gain 10-20 dB

Pyramidal horn Conical horn (mOderate gain)

Microstip Antennas

Mobile phone antenna


http://www.antenna-theory.com/basics/radPattern.html
http://www.antenna-theory.com/basics/radPattern.html
http://www.antenna-theory.com/basics/gain.php

Antennas Arrays
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Reflector array
Yagi Uda
Reflector Antennas
feed
feed

Reflector

Parabolic reflector
(front feed)

Reflector

Parabolic reflector and
hyperbolic subreflector
(Cassegrain feed)

Very good directivity (high gain)- Long distance communication




Basic antenna parameters

Space quantities

Antenna

Circuit
quantities
Radiation Current Radiation pattern
resistance | distribution Directivity

Gain

Example of
Radiation pattern




*Radiation Mechanism
o For single wire

Current in a thin wire with a linear charge density q; (C/m):

I=qivz: (A)

Thin Wire

If the current is time varying

dlz_ dvz_ .

where a; (m/s?) is the acceleration. If the wire is oflength I, then

!Eﬂz—! duz_i

this equation

is the basic relation between current and charge, and it also serves as the fundamental relation

of electromagnetic radiation.

Truncated
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(c) Discontinuous

A introduced on the wire
creates|charges acceleration:

To create radiation, there must be a time-varying current or an acceleration (or deceleration) of charge.

+ To create charge acceleration (or deceleration) the wire must be curved, bent, discontinuous, or terminated.

+ Periodic charge acceleration (or deceleration) or time-varying current is also created when charge is oscillating in a
time-harmonic motion.

1. If charge is moving with a uniform velocity:

{a) There is no radiation if the wire is straight, and infinite in extent.

(b] There is radiation if the wire is curved, bent, discontinuous, terminated, or truncated.

2. If charge is oscillating in a time-motion, it radiates even if the wire is straight.




o For two wires
* Applying a voltage across the two-conductor transmission line creates an electric field between the conductors.

* The movement of the charges creates a current that in turn creates a magnetic field intensity.

* The creation of time-varying electric and magnetic fields between the conductors forms electromagnetic waves which
travel along the transmission line.

* If we remove part of the antenna structure,free-space waves can be formed by “cunnecting" the open ends of the
electric lines.
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If the initial electric disturbance by the source is of a short duration, the created eleciromagnetic waves travel inside
the transmission line, then into the antenna, and finally are radiated as free-space waves, even if the electric source
has ceased to exist.

If the electric disturbance is of a continuous nature, eleciromagnetic waves exist continuously and follow in their
travel behind the others.

However, when the waves are radiated, they form closed loops and there are no charges to sustain their existence.

Electric charges are required to excite the fields but are not needed to sustain them .



current distnibution

electrical field (E) magnetic field (h)

Field distribution on a A/2 Dipole

O
O—

electrical field

.,\\

magnetic field magnetic field

electrical field electrical field

Wave propagation -

A 12 Dipole antenna

Maxwell’s Equations

Differential (or point form) Remarks

te

V.D=p, Gauss's Law
. Nonexistence of isolate
.?-B =0 Magnetic charge
e X
= dB
VixEi=- Y Faraday's Law
5 . D o
?:-iH;: J+ Ampere's Circuit Law
-+ ot

electric field intensity (V/m) !

| magnetic field intensity (H/m} }-




Current distribution on a \/2 wire antenna for different times
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Maxwell’s equations

The physics of the fields radiated by an antenna are described by Maxwell's
equations. For harmonic variations of the fields (¢**), we can write

_[= 0 in source region

VxH=jwsE+J (1) with  J
=0 elsewhere

VxFE=—jupH (2) |

- = i oy E, H: Electric and magnetic field = =
V- D=:zV-E=p (")) D:  Dielectric displacement VxV =curlV

= R B:  Magnetic flux (induction) YV — div T
V-B= H V-H=0 (-1) T Electric source current density v ‘1[ din I

p- Charge density V¢ = grad¢

Vector potentials

To analyze the fields radiated by sources, it is common practice to introduce
auxiliary functions known as vector potentials, which will aid in the solution of
Maxwell's equations.

I/éources\ll Integration ®‘@diated ﬁe&
UL 4 Path 1 N\ BE

@ Path 2 —— Path 2

Integration ector potentials Differentiation

NAF E

* The two-step procedure usually involves simpler integrations than the direct path.
* The use of vector potentials basically permits to reduce the number of unknowns.



Useful identities from vector analysis

During the following mathematical treatment, we will make use of the following
relations:

div curl = 0 or V- (VxV)=0

curl grad =0  or Vx(Vg)=0

Reciprocally, it can then be demonstrated that

1) If the divergence of a vector field equals zero, then there exists a potential
vector field so that the curl of the potential field equals the vector field

—

V.V=0 = thereexists U sothat V =V xU ()

2) If the curl of a vector field equals zero, then this vector field can be written as
the gradient of a potential function

—

VxV =0 = thereexists ¢ sothat 7 = V¢ (™)




2. Vector potential A for electric current source .J

® Since V.B=0 ,the magnetic flux B can be represented as the curl of
another vector A
B, =V xA (V-B=V-(VxA)=0 accordingto ("))
or - ; - 3 N
HA=;VxA (\B_izpﬂ_il}

The vector A is called magnetic vector potential.

@ The definition of A is put into Faraday's law (Maxwell equation (2))
V xE, = —jupH, = —juV x A - vx(éﬂ+j~di)=ﬂ

® We can now apply the identity (**) from the previous page to define the
electric scalar potential ¢, (V x(~V4,) = 0)

Since V x (EA + JE) = 0, there exists a scalar function ¢. so that

By +jwA=-V¢, [P |E,=-V¢ —jul




The scalar function ¢_represents an arbitrary electric scalar potential which is a
function of position.

® Relationship between A and 0.

We now consider Ampere’s law (Maxwell equation (1)) V X ETA = jk-;fﬁﬂ +J
Introducing the defined vector and scalar potentials, we can write

—‘Fx‘\—xﬂ—jw Vo —jbﬂ}—h}'

1,
1{— VxVxA= v(x— A] V2A

V(? A A——Jw-pTUer-pAerJ

The vector potential A is defined through its curl.
Lorenz condition define its divergence.

V.A = —ivend : | o = - Inhomogeneous wave
— IR VA+weud =—uJ equation for A

The electromagnetic wave equation is a second-order partial differential equation
that describes the propagation of electromagnetic waves through a medium or in a vacuum




@® A solution for this inhomogeneous wave equation

A= [”J—dﬂ

—_— — —

® |n addition, using the Lorenz condition, once A is known, the fields H, E,
can be determined

® Thus the electromagnetic field H E, can be calculated from a single
vector potential A.



3. Similarly Vector potential ¥ for magnetic current source 1/
®

@® Using the Lorenz condition, once F is known, the fields ﬁF_EF can be
determined

L v(v-F)

H.=-Vé_ — jwF =—jwF —j
A hl.:,ux:"

V.-F = — JWE U,

® Thus the electromagnetic field E’F_EF can be calculated from a single
vector potential F'.



The total fields
The radiated fields will be the superposition of two contributions:
- fields generated by electric current sources J

- fields generated by magnetic current sources M

The total fields from these two contributions can be written in terms of E and F

—_

Summary of the analysis procedure

—

1) Specify the sources J and M
2) Find the vector potential A and F
3) Find the field contributions E and H



Infinitesimal Dipole

* Aninfinitesimal linear wire (/ << A) is positioned symmetrically at the ori-
gin of the coordinate system and oriented along the z axis.

* The spatial variation of the current is assumed to be constant and given

by
1(Z) = azly

where [ is a constant.

e The source only carries an electric current I,. I,; and the potential Souree puint——
function F are zero. To find A we write
i ~jkR
A(x,y,2) = —f I.(x',y,2) al'. Z
Y 4 Jo ety R

=

\

R —F_7 Line current

where /

(x, ¥, z) : Observation point coordinates.

Z
(x, y’, Z') : Coordinates of the source. '
R: The distance from any point on the source to the observation
C : Path along the length of the source. point. L
I(X,y,2) = asl. (x’7
x'=0,y'=0,Z =0, fortheinfinitesimal dipole.
X

R= \/[x—x"]2+[}-—y’}2+[z—z'}2 = \/xz +y2+z?=r (constant).
dl' =dz'.

(x,y,2)



HI[] ikr 2 a HI[]I

A LV, =A——JT dF=A —jki".
(x,y,2) = a; 4}1}*8 » Z 2 4y e
1
Hyj=-—-VxA _ _ EpVxHpg=]+jweE,.
7
Transformation from rectangular to spherical coordinates:
Ar sinfcos¢ sinfsing cosf | [Ax
Ag | = |cosfcos¢p cosflsing —sinf| | Ay
Ap —sing cos ¢ 0 Az
A_r= U,A‘};=U,Az#0.
Inl —jkr
Ay = Azcosf = Hl0%® cosB.
4dmr
Inl —jkr
A5=—Azsin6‘=—p ¢ sinf.
dmr
Ap=0.
Vx A ar (A 0) aA a | 1 6 [A)+ I (rAp) aA
x A= sinfl) — — —(r — | —(r - —
rsin@ |06 ¢ 5028 |* 7 |sinfap "oy e SV il




H 1 ag 0 (r Ap) 0 A ]
= —— | —I\F -_ —
por o [or 00" "
H,=Hg=0.
H¢:jk1gfsin9 i oJkr
Amr jkr
1 The Electric field generated from magnetic field
E=E,=-—VxH. in free space, thus J=0 and thus E and H components
Jwe are valid everv where except on the source itself
Iyl cosB 1 ,
r= 0 ]. + — (?_J kr.
2mr? jkr
klplsin® 1 1 ,
A= jf} 0 + — 2 (?_J k'il'"
dmr jkr (kr)
Ep=0.
Far Field kr > 1
o r Eg=j kj'gie‘ik‘" sinf
0= Iy r
Erqub:Hr:Hﬂ—D
klgle™I*r
Hy = sinf
¢=J amr

E- and H-field components are perpendicular to each other, transverse to
the direction of propagation.



Power Density and Radiation Resistance
* For alossless antenna, the real part of the input impedance is designated
as the radiation resistance, that power is transferred from the guided wave

to the free space wave.

I B -
W= JExH" = (a,E; +agEo) x (g Hy .

- %[angH; - aHB,H;].

W_E'IUIESiHEH L 1

"8l A r2 Fkr3 |

Woe i k|Iy1|? cos@sinf 1
o=11 1672713 L+ (kr)?2 |’

The complex power moving int eh radial direction

2T pm
P =# W»ds=f f (@, W, +agWp)-a,r*sin0dfdd¢
5 0 0

2w pmw
= f f W, r?sin0d0d¢
0 0
T Iﬂfz[l 1
) Fer? |




For large values of kr (kr > 1), the reactive power diminishes. For free space
n =120,

Time average power radiated is

Ipl |2

A

Prad = ﬂ(g]

e )4 e 3

Example 4.1

Find the radiation resistance of an infinitesimal dipole whose overall length is [ = A /50.
Solution:

12 13?2
R, = 80m° (I) — 807 (ﬁ) = 0.316 ohms

Since the radiation resistance of an infinitesimal dipole is about 0.3 ohms, it will present a
very large mismatch when connected to practical transmission lines, many of which have
characteristic impedances of 50 or 75 ohms. The reflection efficiency (e,) and hence the
overall efficiency (eq) will be very small.



Radian Distance and Radian Sphere

* Distance r=1/K=A/2mis called radian distance

* Radian sphere is spherical region of radius A/2n o ovhgy
. .
around a small dipole antenna at which induction -~ f;" Energy stoage N
(imag.) and radiation(real) terms are equal in -~ ! /:/ \“\ ‘\.
magnitude,.inside radian sphere induction term = 0 0 S L
dominate, outsi here radiation term A B
| - N\
dominate. \ \ /
\ Dipale ,r"
° r 1 ~ 7
pP_pt|0t 1 — e P
3172 T ker3

For very short dipole
*Reactive Near field region: has r <1/K , power in this region basically stored.
*Far field region: region at r>>1/K, power in this region basically radiate.

For most antennas Reactive near field region outer boundaries are taken to exist at
a distance R< 624/D°/4 from the antenna surface. Where D is the largest
dimension of the antenna.

For all antennas this concept is applicable, the power density ( Poynting vector
w/m2) in regions closed to antennas are basically reactive (stored) and at faraway is
basically real (radiated).
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Figure 2.7 Field regions of an antenna.

* Far field zone:

1-field components are transverse to radial direction from antenna, and all
power flow is directed radially outward.

2-shape of radiation pattern is independent on distance.
* Near field zone:

1-field components may not transverse to radial direction from antenna and
power is not entirely radial.

2-shape of radiation pattern is dependent on distance.



Sheet (1)

1. State different types of antenna

2. Describe radiation mechanism for single wire and two wires antenna.

3. Derive the wave equation described by magnetic vector potential.

4. A horizontal infinitesimal electric dipole of constant current |, is placed symmetrically
about the origin and directed along the x-axis. Derive the far-zone fields radiated by the
dipole.

5. Repeat Problem 4 for a horizontal infinitesimal electric dipole directed along

the y-axis.

6. Why the infinitesimal electric dipole is not a practical antenna.



«  The divergence of a continuously differentiable vector field F=U i+ V j + W Kk is equal to the scalar-
valued function:

agu  ov  aw

d1vF=?-F=3$+3y—|— 52

The gradient (or gradient vector field) of a scalar function f

In the three-dimensional Cartesian coordinate system, this is given by

af. adf. o
Vf= JfH—ﬁ{lr,]—i—aj;

Ox k

he Laplace operator is & second order difterential operator in the s-dimensional Euclidean space, defined as the divergence (V) of the gradient (¥ f). Thus if [ is a twice-
differentiable real-valued function, then the Laplacian of fis defined by

Af=V*f=V-Vf

In Cartesian coordinates,
0* 0? d*
&f - ¥ -Z—l_ & -£+ ¥ j;'
dx?  Oy? 0z




